요청에 따라 응답에 30초에서 1분 가량의 정도 시간이 소요될 수 있습니다.

KnockG
Gene Knockdown Simulation

Predict marker expression changes when a target is knocked down using generative AI (pseudo-blotting)

Normal

ENSG00000111704 knock-down
(NANOG : Nanog homeobox)

Model: 2024-981
Perturbation: Differentiation
Generated: 2024-07-10 11:15:24 +0900

DAY0

MID

DAY3

DAY0

MID

DAY3

ENSG00000132646
(PCNA : proliferating cell nuclear antigen)
  1.431     1.407     1.003     1.363     0.907     0.503  
ENSG00000148773
(MKI67 : marker of proliferation Ki-67)
  0.813     0.897     0.748     0.999     0.555     0.139  
ENSG00000186395
(KRT10 : keratin 10)
  0.916     0.851     0.848     1.065     0.927     0.720  
ENSG00000170421
(KRT8 : keratin 8)
  1.240     1.285     1.265     1.200     1.436     1.456  
ENSG00000111704
(NANOG : Nanog homeobox)
(Knock-downed)
  1.135     1.239     0.331     0.186     0.345     0.376  
ENSG00000075624
(ACTB : actin beta)
(Standard)
  1.0     1.0     1.0     1.0     1.0     1.0  
Download
저장하기
5

Background

SilicoPharm Inc. is a company that connects life sciences and artificial intelligence by providing easy-to-use AI solutions for researchers.

KnockG™ is a solution that uses generative AI to create omics data under various environments and gene knockdown conditions, helping to reduce time and costs in life science research and drug development.

lite.KnockG™ is a service that offers some of the features of KnockG™ for free, providing a Pseudo-blotting function (predicting marker expression changes) when specific genes are knocked down using pre-uploaded models.

KnockG™ enables comprehensive and proactive analysis, including training new models, setting up time-series simulations, performing multi-gene knockdowns, exploring and identifying new targets, reviewing literature and patent information of derived targets, and conducting network analysis.

Use Case & Publication